

Welcome to Taxi’s documentation!

[image: _images/taxi.png]

What is Taxi ?

Taxi is a timesheeting tool that focuses on simplicity to help you write your
timesheets without wasting time. All you’ll do is edit a text file and write
down what you’ve worked on and how long, like so:

23/01/2014

pingpong 09:00-10:00 Play ping-pong
infra -11:00 Repair coffee machine

You can then get a summary of your timesheet:

Staging changes :

Thursday 23 january
pingpong (123/456) 1.00 Play ping-pong
infra (123/42) 1.00 Repair coffee machine
 2.00

Total 2.00

Use `taxi ci` to commit staging changes to the server

Through the use of backends, Taxi allows you to push your timesheets to
different systems.

Getting started

Refer to the “Installation” section [https://taxi-timesheets.readthedocs.io/en/main/userguide.html#installation]
in the docs.

Supported backends

	zebra [https://github.com/sephii/taxi-zebra] : Liip’s zebra backend

	tempo [https://github.com/alexandreblin/taxi-tempo] : Atlassian JIRA’s Tempo Timesheets [https://tempo.io] backend

	tipee [https://github.com/alexandreblin/taxi-tipee] : Gammadia’s tipee [https://tipee.ch] backend

	bexio [https://github.com/alexandreblin/taxi-bexio] : Bexio Timesheets [https://bexio.com] backend

	multi [https://github.com/alexandreblin/taxi-multi] : a special backend to push entries over multiple other backends

	clockify [https://github.com/sephii/taxi-clockify] : backend for the free timesheeting tool clockify.me [https://clockify.me/]

Contrib packages

These resources, not part of Taxi core, provide an enhanced experience for certain use cases.

	Cabdriver [https://github.com/metaodi/cabdriver] (generate taxi entries based on Google Calendar, Slack, etc)

	Syntax highlighting for VSCode [https://marketplace.visualstudio.com/items?itemName=LeBen.taxi-syntax-highlighting]

	Vim plugin [https://github.com/schtibe/taxi.vim] (features syntax highlighting, auto completion)

Documentation index

	User guide
	Installation
	OS X, Windows, generic Linux

	Debian & Ubuntu

	NixOS

	Nix

	NixOS

	Common installation issues
	taxi: command not found

	python3: command not found

	First steps with Taxi
	Searching for aliases

	Filtering entries

	Ignored entries

	Entry continuation

	Internal aliases

	Getting help

	Upgrading Taxi

	Timesheet syntax

	Backends
	Configuration

	Configuration options
	auto_add

	auto_fill_days

	date_format

	editor

	file

	regroup_entries

	nb_previous_files

	round_entries

	Flags characters customization

	Developer guide
	Timesheets and entries

	Loading and saving timesheets

	Timesheet collections

	Creating a backend
	Registering the backend

	Pushing entries

	Creating custom commands

	Getting a development environment

	Running tests

	API documentation
	Backends
	Plugins

	Exceptions

	Timesheets
	Timesheet lines

	Timesheet parsing

	Exceptions

User guide

Installation

To install Taxi, follow the steps below specific to your system.

OS X, Windows, generic Linux

Make sure you have Python at least 3.7 installed (by running python3
--version), then use python3 -m pip to install taxi in your user directory
(you should not use sudo or run this command as root):

$ python3 -m pip install --user taxi

You’ll probably want to install a backend too, that will allow you to push your
timesheets. To install the Zebra backend for example (again, no sudo or root
user needed):

$ python3 -m pip install --user taxi-zebra

To upgrade Taxi and the Zebra plugin, run python3 -m pip install --user --upgrade taxi taxi-zebra

Debian & Ubuntu

Run the following commands to add the Taxi repository and install it along with
the Zebra backend:

sudo apt install apt-transport-https
wget 'https://taxi-packages.liip.ch/taxi-packages.liip.ch.key' -O - | sudo apt-key add
echo "deb [arch=amd64] https://taxi-packages.liip.ch/ unstable-ci main" | sudo tee /etc/apt/sources.list.d/taxi.list
sudo apt update
sudo apt install taxi taxi-backend-zebra

NixOS

If you’re running NixOS, you can then install it declaratively by adding it to
your /etc/nixos/configuration.nix file and then running nixos-rebuild
switch:

let
 taxi = import <taxi>;
in
environment.systemPackages = [
 # ...
 taxi.taxi
]

Nix

Create a flake.nix file in a directory with the following contents:

{
 inputs.taxi.url = "github:sephii/taxi";
 inputs.flake-utils.url = "github:numtide/flake-utils";

 outputs = { self, nixpkgs, taxi, flake-utils }:
 flake-utils.lib.eachDefaultSystem (system: {
 packages.taxi = taxi.defaultPackage.${system}.withPlugins
 (plugins: [plugins.clockify plugins.zebra]);
 });
}

In this example, the clockify and zebra plugins are enabled. Feel free to adapt
this file with the plugins you want to enable. You’ll find a list of available
plugins in the ``availablePlugins` attribute of the pkgs.nix file <https://github.com/sephii/taxi/blob/main/pkgs.nix#L121>`_.

Make sure your flake.nix and flake.lock files exist and are version controlled:

git init
git add flake.nix
nix flake lock
git add flake.lock
git commit -m "Init taxi"

Add the flake to your registry:

nix registry add taxi /path/to/your/flake/dir

Now you can finally install the package:

nix profile install taxi#taxi

Running the taxi command should now work!

To upgrade taxi, cd to the directory where you created the flake and run:

nix flake lock --update-input taxi
git add flake.nix flake.lock
git commit -m "Update taxi"
nix registry pin taxi
nix profile install taxi#taxi

NixOS

Use the overlay in taxi.overlay:

{
 inputs.taxi.url = "github:sephii/taxi";

 outputs = attrs@{ nixpkgs, taxi, ... }: let
 pkgs = import nixpkgs {
 overlays = [taxi.overlay];
 };
 in {
 nixosConfigurations.myConfig = nixpkgs.lib.nixosSystem {
 modules = [
 ({ pkgs, ... }: { environment.systemPackages = [pkgs.taxi-cli.withPlugins (plugins: [plugins.clockify plugins.zebra])]; })
];
 }
 }
}

Adapt the configuration depending on the plugins you need. You’ll find a list of
available plugins in the ``availablePlugins` attribute of the pkgs.nix file <https://github.com/sephii/taxi/blob/main/pkgs.nix#L121>`_.

Common installation issues

taxi: command not found

This usually means the Python user binary path (where the taxi binary is
installed) is not in your PATH environment variable.

Run the following command to identify the Python user binary path:

$ python3 -c "import os, site; print(os.path.join(site.getuserbase(), 'bin'))"
/home/sephi/.local/bin

Add this directory to your PATH environment variable, for example by
following this guide [https://stackoverflow.com/a/14638025].

python3: command not found

Run the following command:

$ python --version
Python 3.8.5

Check that the version is at least 3.7. If that’s the case, replace python3
by python when running commands. If that’s not the case, install Python 3.

First steps with Taxi

Once Taxi is installed, you’ll probably want to fetch the projects list from
your backend:

taxi update

Since this is the first time you run Taxi, you’ll get asked a few questions:

Welcome to Taxi!
================

It looks like this is the first time you run Taxi. You will need a
configuration file (~/.config/taxi/taxirc) in order to proceed.
Please answer a few questions to create your configuration file.

Backend you want to use (choices are dummy, zebra): zebra
Username or token: b4b8123f4addb27ad0eb0b2b0a0ae81730af96b8
Password (leave empty if you're using a token) []:
Editor command to edit your timesheets [vim]:
Hostname of the backend (eg. timesheets.example.com): zebra.example.com

Taxi is now ready to use! Let’s start by recording the time we spent installing
Taxi:

taxi edit

Note

If you didn’t choose the correct editor when running Taxi for the first
time you might get into an editor called vim at this point. To exit it,
type :q!. Then to manually set the editor Taxi should use, open your Taxi
configuration file (by using the command taxi config), and change the
value of the editor setting to the editor you want. If you’re using
Linux, you might put gedit. If you’re using OS X, you might put open
-a TextEdit.

Your editor will pop up and you’ll see the current date has been automatically
added for you. Let’s add an entry so your file looks something like that:

09/05/2016

intro 10:15-10:30 Install Taxi

An entry consists of 3 parts:

	An alias (intro)

	A duration (10:15-10:30)

	A description (Install Taxi)

Aliases allow you to map meaningful names to activity ids. At that point
you’ll probably don’t really know what alias to use, so let’s just try that for
now and we’ll see what Taxi has to say about it.

Save the file and close your editor. You should see Taxi displaying a summary
of what you did:

Staging changes :

Monday 09 may

intro (inexistent alias) 0.25 Install Taxi
 Did you mean one of the following: _internal, _infra, _interview?
 0.25

Total 0.25

Use `taxi ci` to commit staging changes to the server

Note

Depending on the editor you’re using you might not see anything happening
when you close the file and you might need to run taxi status to get this
output.

Whoops! It looks like the alias we used doesn’t exist. Taxi tried to help us by
suggesting similar matches among available aliases, and actually _internal
looks like the correct alias to use. We could have searched for aliases that
look like internal with the following command: taxi alias list internal.

Note

This alias _internal exists because we ran taxi update before, which
synchronized the aliases database from the remote backend. You can also use
custom aliases that will not be shared with the remote backend. Refer to
the alias command help by running taxi alias --help.

Let’s edit our file once again and fix that:

taxi edit

Replace the intro alias with _internal:

09/05/2016

_internal 10:15-10:30 Install Taxi

Close your editor and run taxi status if needed and check the output:

Staging changes :

Monday 09 may

_internal (7/16, liip) 0.25 Install Taxi
 0.25

Total 0.25

Use `taxi ci` to commit staging changes to the server

You can now see the _internal alias has been recognized as mapped to project
id 7, activity id 16 on the liip backend. If you’re satisfied with that, you
can now push this to the remote server (ci is a shorthand for commit, which
is equivalent):

taxi ci

Searching for aliases

The whole point of Taxi is to record your time spend on activities, but how do you know which activities you can use?
As explained in the introduction, activities are fetched with the update command. To see the available aliases, use
the alias list command:

$> taxi alias list

[dummy] my_alias -> 2000/11 (My project, my activity)

The part that appears in brackets is the backend that will be used to push the entries when using the commit command.
The information on the right of the arrow is the “mapping”, that is a project id and an activity id, whose names are in
parentheses.

You can search for a specific alias by adding a search string to the alias list command:

$> taxi alias list my_awesome_alias

You can also limit the results to aliases you have already used in your timesheets with the –used option:

$> taxi alias list --used

Filtering entries

The status and commit options support the –since, –until and –today/–not-today options that allow you to
specify which entries should be included in the command. For example let’s say you entered entries for yesterday and
today (Wednesday 21 june):

$> taxi status
Staging changes :

Tuesday 20 june

_internal 0.25 Install Taxi
 0.25
Wednesday 21 june

_internal 1.00 First steps with Taxi
 1.00

Total 1.25

Use `taxi ci` to commit staging changes to the server

And you only want to commit yesterday’s entry. You can use the –not-today option that will ignore today’s entries.
Since you can use this option both with the status and commit command, you can review what you’re about to commit
with the status command:

$> taxi status --not-today
Staging changes :

Tuesday 20 june

_internal 0.25 Install Taxi
 0.25

Total 0.25

Use `taxi ci` to commit staging changes to the server

If you wanted to only include today’s entries, you could use the –since option. Both –since and –until support
the following notations:

	Relative: 5 days ago, 2 weeks ago, 1 month ago, 1 year ago, today, yesterday

	Absolute: 21.05.2017

Back to our entries, let’s filter yesterday’s entry:

$> taxi status --since=today
Staging changes :

Wednesday 21 june

_internal 1.00 First steps with Taxi
 1.00

Total 1.00

Use `taxi ci` to commit staging changes to the server

In fact, the –today option is just a shortcut for –since=today –until=today.

Ignored entries

You’ll sometimes have entries for which you’re not sure which alias you should
use and that shouldn’t be pushed until you have a confirmation from someone
else. Simply prefix the entry line with ? and the entry will be ignored. If we
run the edit command and add a question mark to our pingpong alias like
so:

23/02/2015

? pingpong 09:00-10:30 Play ping-pong

The output becomes:

Staging changes :

Monday 23 february
pingpong (ignored) 1.50 Play ping-pong
 1.50

Total 1.50

Use `taxi ci` to commit staging changes to the server

Entry continuation

Having entries that follow each other, eg. 10:00-11:00, then 11:00-13:00, etc is
a common pattern. That’s why you can skip the start time of an entry if the
previous entry has an end time. The previous example would become (note that
spaces don’t matter, you don’t need to align them):

23/02/2015

pingpong 09:00-10:30 Play ping-pong
taxi -12:00 Write documentation

You can also chain them:

23/02/2015

pingpong 09:00-10:30 Play ping-pong
taxi -12:00 Write documentation
internal -13:00 Debug coffee machine

Internal aliases

Some people like to timesheet everything they do: lunch, ping-pong games, going
to the restroom… anyway, if you’re that kind of people you probably don’t
want these entries to be pushed. To achieve that, start by adding a dummy
backend to your configuration file (to open it, run taxi config):

[backends]
internal = dummy://

Then to add an internal alias, either add it in the corresponding section in
your configuration file:

[internal_aliases]
_pingpong
_lunch
_shit

Or use the alias command:

taxi alias add -b internal _pingpong ""

Getting help

Use taxi <command> --help to get help on any Taxi command.

Upgrading Taxi

To upgrade Taxi, run python3 -m pip install --upgrade taxi. If you have any plugins,
you’ll also need to manually upgrade them, by running for example python3 -m pip
install --upgrade taxi-zebra.

Timesheet syntax

Taxi uses a simple syntax for timesheets, which are composed of dates and
entries. If you used the edit command, you already saw the dates. A date is
a string that can have one of the following formats:

	dd/mm/yyyy

	dd/mm/yy

	yyyy/mm/dd

Actually the separator can be any special character. You can control the format
Taxi uses when automatically inserting dates in your entries file with the
date_format configuration option.

Timesheets also contain comments, which are denoted by the # character.
Any line starting with # will be ignored.

Entries are the entity that allow you to record the time spent an various
activities. The basic syntax is:

alias duration description

alias can be any string matching a mapping defined either by your
configuration, or a shared alias. If an alias is not found in the configured
aliases, a list of suggestions will be given and the alias will be ignored when
pushing entries.

duration can either be a time range or a duration in hours. If it’s a time
range, it should be in the format start-end, where start can be left
blank if the previous entry also used a time range and had a time defined, and
end can be ? if the end time is not known yet, leading to the entry
being ignored. Each part of the range should have the format HH:mm, or
HHmm. If duration is a duration, it should just be a number, eg. 2 for
2 hours, or 1.75 for 1 hour and 45 minutes.

description can be any text but cannot be left blank.

Backends

Note

The plugin command is available starting from Taxi 4.2.

Backends are provided through Taxi plugins. To install (or upgrade) a plugin,
use the plugin install command:

taxi plugin install zebra

This will fetch and install the backend plugin. Once installed, you’ll still
need to tell Taxi to use it. This is explained in the next section.

You can also see which plugins are installed with plugin list:

$> taxi plugin list
zebra (1.2.0)

Note

This is only valid if you installed Taxi with the install script, that
transparently deals with installing Taxi in an isolated environment. If you
installed it differently (eg. by using a Debian package or by using pip),
either install the corresponding Debian package for the backend you want to
use or use pip (eg. pip install taxi-zebra).

Configuration

You can open your configuration file using the command taxi config.

The configuration file uses the XDG user directories [https://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html]
specification. This means the location is the following:

	Linux: ~/.config/taxi/taxirc

	OS X: ~/Library/Application Support/taxi/taxirc

	Windows: %LOCALAPPDATA%\sephii\taxi\taxirc or C:\Users\<User>\AppData\Local\sephii\taxi\taxirc

You can see the location of the configuration file used by running taxi in verbose mode, for example:

$ taxi -vvv status
DEBUG:root:Using configuration file in /home/sephi/.config/taxi/taxirc
...

The configuration file has a section named backends that allows you to
define the active backends and the credentials you want to use. The syntax of
the backends part is:

[backends]
default = <backend_name>://<user>:<password>@<host>:<port><path><options>

Here a backend named default is defined. The backend_name is the adapter
this backend will use. You’ll find this name in the specific backend package
documentation. The backend_name is the only mandatory part, as some
backends won’t care about the user, password, or other configuration
options.

The name of each backend should be unique, and it will be used when defining
aliases. Each backend will have a section named [backend_name_aliases] and
[backend_name_shared_aliases], where backend_name is the name of the
backend, each containing the user-defined aliases, and the automatic aliases
fetched with the update command.

Note

If you have any special character in your password, make sure it is
URL-encoded, as Taxi won’t be able to correctly parse the URI otherwise.
You can use the following snippet to encode your password:

>>> import urllib
>>> urllib.quote('my_password', safe='')

On Python 3:

>>> from urllib import parse
>>> parse.quote('my_password', safe='')

Configuration options

auto_add

Default: auto

This specifies where the new entries will be inserted when you use start and
edit commands. Possible values are auto (automatic detection based on your
current entries), bottom (values are added to the end of the file), or top
(values are added to the top of the file) or no (no auto add for the edit
command).

auto_fill_days

Default: 0,1,2,3,4

When running the edit command, Taxi will add all the dates that are not
present in your entries file until the current date if they match any day
present in auto_fill_days (0 is Monday, 6 is Sunday). You must have
auto_add set to something else than no for this option to take
effect.

date_format

Default: %d/%m/%Y

This is the format of the dates that’ll be automatically inserted in your
entries file(s), for example when using the start and edit commands. You
can use the same date placeholders as for the file option.

editor

When running the edit command, your editor command will be deducted from your
environment but if you want to use a custom command you can set it here.

file

Default: ~/zebra/%Y/%m.tks

The path of your entries file. You’re free to use a single file to store all
your entries but you’re strongly encouraged to use date placeholders here. The
following will expand to ~/zebra/2011/11.tks if you’re in November 2011.

You can use any datetime format code defined in the strftime documentation [http://docs.python.org/library/datetime.html#strftime-and-strptime-behavior]
down to a resolution of a day (hours, minutes and seconds format codes are not
supported because they make little sense).

regroup_entries

Default: true

If set to false, similar entries (ie. entries on the same date that are on the
same alias and have the same description) won’t be regrouped.

Note

This setting is available starting from Taxi 4.1

nb_previous_files

Default: 1

Defines the number of previous timesheet files Taxi should try to parse. This
allows you to make sure you don’t forget hours in files from previous months
when starting a new month.

This option only makes sense if you’re using date placeholders in
file.

round_entries

Default: 15

Number of minutes to round entries duration to when using the stop command.
For example, if you start working on a task at 10:02 and you run taxi stop at
10:10 with the default round_entries setting you’ll get 10:02-10:17. Note
that entries are always rounded up, never down.

Flags characters customization

By default Taxi uses the = character for pushed entries and ? for ignored entries. You can customize them in the
[flags] section of the configuration file. Note that using # as a flag character will make any flagged entry
interpreted as a comment and won’t be parsed by Taxi. Example of using custom characters for the ignored and pushed
flags:

[flags]
ignored = !
pushed = @

Developer guide

Timesheets and entries

The Entry class is the base of Taxi. An entry is the record of an activity for a certain
period of time. It consists of an activity, a time span, and a description:

>>> from taxi.timesheet import Entry
>>> my_entry = Entry('_internal', 1, 'Play ping-pong')

Entries duration can be expressed either as a fixed duration, in hours (eg. 0.5 for half an hour), or as time spans.
Time span notation works with 2-items tuples, like so: (start_time, end_time). In the following example, the entry
starts at 9:30 and ends at 10, thus having a duration of half an hour:

>>> from datetime import time
>>> my_entry = Entry('_internal', (time(9, 30), time(10)), 'Play ping-ping')
>>> my_entry.hours
0.5

end_time can be left blank, in that case the entry will be considered as being “in progress”. This is useful in
certain situations, for example the start command uses this feature to start an entry which can then be “stopped”
with the stop commands (which detects the last in-progress activity and sets its end time).

>>> my_entry = Entry('_internal', (time(9), None), 'Play ping-pong')
>>> my_entry.hours
0
>>> my_entry.in_progress
True

Now we know how to create entries, we can put them together in timesheets, which is a collection of entries and dates.
You might have noticed entries don’t have an associated date: that’s because the link between dates and entries is in
the timesheet itself. Let’s create a timesheet:

>>> from datetime import date
>>> from taxi.timesheet import Timesheet
>>> timesheet = Timesheet()
>>> timesheet.entries
{}

Now we have a timesheet, we can start adding entries to it:

>>> timesheet.entries.add(date(2017, 6, 7), my_entry)
>>> timesheet.entries
{datetime.date(2017, 6, 7): [<Entry: "_internal 0 Play ping-pong">]}

You can dump the timesheet contents by casting it to a string:

>>> str(timesheet)
'07.06.2017\n\n_internal 09:00-? Play ping-pong'

Entries also have flags: pushed and ignored. Ignored and pushed entries will be excluded from the commit process:

>>> my_entry = Entry('_internal', 1, 'Play ping-pong')
>>> my_entry.ignored = True
>>> timesheet = Timesheet()
>>> timesheet.entries.add(date(2017, 6, 7), my_entry)
>>> str(timesheet)
'07.06.2017\n\n? _internal 1 Play ping-pong'

Loading and saving timesheets

Use the load method to create a timesheet from a file:

>>> timesheet = Timesheet.load('/tmp/timesheet.tks')
>>> timesheet.entries.add(date(2017, 6, 7), Entry('_internal', 1, 'Play ping-pong'))
>>> timesheet.save()

You can also save the timesheet to a different file from the file it was loaded from:

>>> timesheet.save('/tmp/new_timesheet.tks')

Timesheet collections

Dealing with multiple timesheets is achieved through the taxi.timesheet.TimesheetCollection class. This is
useful if you want to run operations on multiple timesheets in a single command. The TimesheetCollection class
proxies all calls to the associated timesheets and aggregates the results. The following example illustrates how the
entries attribute from a timesheet collection can be used to transparently access entries from all associated
timesheets:

>>> from taxi.timesheet import TimesheetCollection
>>> timesheets = [Timesheet(), Timesheet()]
>>> timesheets[0].entries.add(date(2017, 6, 8), Entry('_internal', 1, 'Play ping-pong'))
>>> timesheets[1].entries.add(date(2017, 7, 8), Entry('_internal', 1, 'Play ping-pong'))
>>> timesheet_collection = TimesheetCollection(timesheets)
>>> timesheet_collection.entries
{datetime.date(2017, 6, 8): [<Entry: ...>], datetime.date(2017, 7, 8): [<Entry: ...>]}
>>> timesheet_collection.get_hours()
2

Creating a backend

A backend is a Python package that can be installed independently of Taxi and
that persists the entries transmitted by the commit command. To create a
backend, you’ll need to create a new Python package, which is hopefully quite
easy to do.

As an example, we’ll build a simple backend that sends the timesheets it
receives by mail. We’ll call it taxi_mail.

Registering the backend

A backend provides functionality but should not contain harcoded configuration
such as usernames or passwords. Think about other people who will want to use
your backend, they’ll probably don’t have the same credentials as you.

A backend is defined and configured by a URI that allows you to configure it.
The full syntax is:

[backends]
default = <backend_name>://<user>:<password>@<host>:<port><path><options>

Your backend obviously doesn’t have to use all the parts of the URI. For
example an unauthenticated backend won’t need any user or password, and the
user is allowed to leave them blank in the configuration file.

Let’s start to write our backend. The first thing you’ll want to do is define a
setup.py file. Here’s an example:

#!/usr/bin/env python
from setuptools import find_packages, setup

setup(
 name='taxi_mail',
 version='1.0',
 packages=find_packages(),
 description='Mail backend for Taxi',
 author='Me',
 author_email='me@example.com',
 url='https://github.com/me/taxi-mail',
 license='wtfpl',
 entry_points={
 'taxi.backends': 'smtp = taxi_mail.backend:MailBackend'
 }
)

The important part is the entry_points. This is what will tell Taxi the
class to use for the backend. The key smtp is the name of the backend. This
is what the user will put in <backend_name> in the configuration file. The
part taxi_mail.backend:MailBackend is the path to our backend class. This
basically means from taxi_mail.backend import MailBackend.

Let’s create the backend class:

file: taxi_mail/backend.py

from taxi.backends import BaseBackend

class MailBackend(BaseBackend):
 pass

The first thing our backend will need to do is store the information we want
from the URI so that we can use it later. The BaseBackend already defines
an __init__ method that stores all the parts of the backend URI so there
isn’t much to do. Let’s think about how the user will configure our backend.
The following syntax would probably make sense:

[backends]
mail = smtp://user:password@smtp.gmail.com/me@example.com

We decided to use the <path> part for the e-mail address of the recipient.
There’s one detail though: the path here is /me@example.com, so we need to
get rid of that initial slash. Let’s do it:

class MailBackend(BaseBackend):
 def __init__(self, **kwargs):
 super(MailBackend, self).__init__(**kwargs)
 self.path = self.path.lstrip('/')

Pushing entries

We now have all the information we need to send mails. For the actual sending,
we could implement the push_entry method. However this will fire for every
entry, which means we would get one mail per entry. Obviously this is not what
we want, but hopefully you can implement the post_push_entries method,
which is called once after all entries have been committed. This method also
gives you a chance to raise an exception for failing entries.

So let’s buffer the entries to put in the mail in the push_entry method and
send them all in the post_push_entries method. The code could look like
that:

from collections import defaultdict
import smtplib

from taxi.backends import BaseBackend

class MailBackend(BaseBackend):
 def __init__(self, **kwargs):
 super(MailBackend, self).__init__(**kwargs)
 self.path = self.path.lstrip('/')
 self.entries = defaultdict(list)

 def push_entry(self, date, entry):
 self.entries[date].append(entry)

 def post_push_entries(self):
 timesheet = []

 for date, entries in self.entries.items():
 timesheet.append(date.strftime('%d %m %Y'))

 for entry in entries:
 timesheet.append(str(entry))

 smtp = smtplib.SMTP_SSL(self.hostname)
 smtp.login(self.username, self.password)
 smtp.sendmail('taxi@example.com', self.path, '\n'.join(timesheet))
 smtp.quit()

Note that for the sake of brevity, we didn’t catch any exception at all in this
example. It’s of course a good idea to do it, so that the user knows why the
entries couldn’t be pushed. If your backends raises an exception, all entries
will be considered to have failed and will be reported as such. If you want to
report only certain entries as failed in post_push_entries, raise a
PushEntriesFailed exception, with a parameter entries that will be a
entry: error dictionary.

We now have a fully working backend that can be used to push entries!

Creating custom commands

Taxi will load any module defined in the taxi.commands entry point. Let’s create a current command that displays
the path to the current timesheet. First, let’s create the command (in taxi_current/commands.py):

import click

from taxi.commands.base import cli

@cli.command()
@click.pass_context
def current(ctx):
 timesheet_path = ctx.obj['settings'].get_entries_file_path(expand_date=True)
 click.echo("Current timesheet path is " + timesheet_path)

The cli.command part allows us to create a Taxi subcommand. For more information on how to use Click, refer to the
official Click documentation [http://click.pocoo.org/5/]. Also feel free to check the source code of the existing
commands that can give a good base to start from.

As with custom backend creation, your package should also have a setup.py file. The commands module should be
registered in the taxi.commands entry point (in the setup.py file):

#!/usr/bin/env python
from setuptools import find_packages, setup

setup(
 name='taxi_current',
 version='1.0',
 packages=find_packages(),
 description='Show current timesheet',
 author='Me',
 author_email='me@example.com',
 url='https://github.com/me/taxi-current',
 license='wtfpl',
 entry_points={
 'taxi.commands': 'current = taxi_current.commands'
 }
)

That’s it! If you install your custom plugin (eg. with ./setup.py install or by using ./setup.py develop as
explained in the Getting a development environment section, you will now be able to type taxi current!

Getting a development environment

Start by cloning Taxi (you’ll probably want to use your fork URL instead of the
public URL):

git clone https://github.com/sephii/taxi

Then create a virtual environment with mkvirtualenv [http://virtualenvwrapper.readthedocs.org/]:

mkvirtualenv taxi

Now run the setup script to create the development environment:

./setup.py develop

Now every time you’ll want to work on taxi, start by running workon taxi
first, so that you’re using the version you checked out instead of the
system-wide one.

Running tests

Setup a virtual environment as explained in the previous section, then install
the test requirements in it:

pip install -r requirements_test.txt

To run the tests, run the following command:

pytest

When developing it’s useful to only run certain tests, for this, use the
following command:

pytest tests/commands/test_alias.py::AliasCommandTestCase::test_alias_list

You can also leave out ::test_alias_list to run all tests in the
AliasCommandTestCase, or leave out ::AliasCommandTestCase as well if
you have multiple test classes and you want to run them all.

API documentation

Backends

The role of a backend is to handle the communication with a backend tool that
will store the timesheets and provide projects and activities.

	
class taxi.backends.BaseBackend(username, password, hostname, port, path, options, context)

	All Taxi backends should inherit from the BaseBackend class.
Backends are usually constructed from a URL in the form
<backend_name>://<username>:<password>@<hostname>:<port><path>?<options>.
The PluginsRegistry takes care of the
parsing and the instanciation of the backend objects. The options
parameter is a dictionary constructed from the backend URL querystring.

Construct the backend.

	
get_projects()

	Return a list of projects and activities. These will be then stored for
further use. The list should contain Project
objects.

	
post_push_entries()

	Called after the entries have been pushed. Useful if you need to do
post-processing like closing connection, or sending entries buffered in
push_entry().

If an exception is raised in this method, the status of all the entries
of the backend will be considered failed. You can also raise
PushEntriesFailed with a custom user message to mark their
status as failed. If you want to mark individual entries as failed,
raise PushEntriesFailed with entries being a dictionary
containing entries as keys, and error messages as values.

	
push_entry(date, entry)

	Called when an entry should be pushed to the backend. date is a
datetime.date [https://docs.python.org/3/library/datetime.html#datetime.date] object. entry is a
TimesheetEntry object.

If the push fails, this method should raise a PushEntryFailed
exception.

	
exception taxi.backends.PushEntriesFailed(message=None, entries=None)

	Exception indicating that a set of entries couldn’t be pushed. Typically
raised by BaseBackend.post_push_entries().

If entries is set, it should be a dictionary mapping
taxi.timesheet.entry.TimesheetEntry with errors as strings.

	
exception taxi.backends.PushEntryFailed

	Exception indicating that an entry couldn’t be pushed.

Plugins

Exceptions

Timesheets

Timesheet lines

	
class taxi.timesheet.lines.DateLine(date, text=None)

	Represents a date in a timesheet.

	
is_date_line = True

	

	
class taxi.timesheet.lines.TextLine(text)

	The TextLine is either a blank line or a comment line.

	
is_text_line = True

	

Timesheet parsing

Exceptions

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 taxi	

 	
 	
 taxi.backends	

 	
 	
 taxi.timesheet.lines	

Index

 B
 | D
 | G
 | I
 | P
 | T

B

 	
 	BaseBackend (class in taxi.backends)

D

 	
 	DateLine (class in taxi.timesheet.lines)

G

 	
 	get_projects() (taxi.backends.BaseBackend method)

I

 	
 	is_date_line (taxi.timesheet.lines.DateLine attribute)

 	
 	is_text_line (taxi.timesheet.lines.TextLine attribute)

P

 	
 	post_push_entries() (taxi.backends.BaseBackend method)

 	push_entry() (taxi.backends.BaseBackend method)

 	
 	PushEntriesFailed

 	PushEntryFailed

T

 	
 	taxi.backends (module)

 	
 	taxi.timesheet.lines (module)

 	TextLine (class in taxi.timesheet.lines)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Taxi’s documentation!

 		
 User guide

 		
 Installation

 		
 OS X, Windows, generic Linux

 		
 Debian & Ubuntu

 		
 NixOS

 		
 Nix

 		
 NixOS

 		
 Common installation issues

 		
 taxi: command not found

 		
 python3: command not found

 		
 First steps with Taxi

 		
 Searching for aliases

 		
 Filtering entries

 		
 Ignored entries

 		
 Entry continuation

 		
 Internal aliases

 		
 Getting help

 		
 Upgrading Taxi

 		
 Timesheet syntax

 		
 Backends

 		
 Configuration

 		
 Configuration options

 		
 auto_add

 		
 auto_fill_days

 		
 date_format

 		
 editor

 		
 file

 		
 regroup_entries

 		
 nb_previous_files

 		
 round_entries

 		
 Flags characters customization

 		
 Developer guide

 		
 Timesheets and entries

 		
 Loading and saving timesheets

 		
 Timesheet collections

 		
 Creating a backend

 		
 Registering the backend

 		
 Pushing entries

 		
 Creating custom commands

 		
 Getting a development environment

 		
 Running tests

 		
 API documentation

 		
 Backends

 		
 Plugins

 		
 Exceptions

 		
 Timesheets

 		
 Timesheet lines

 		
 Timesheet parsing

 		
 Exceptions

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/taxi.png

_static/comment-bright.png

